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The general boundary value problem, including known plane steady 
jet flows of an ideal incompressible fluid, is formulated, The sim- 
plest problem retaining all the specific features of the general prob- 
lem, known as the basic problem, is separated from the general prob- 
lem. The solution of the basic problem is reduced to solving a non- 
linear integro-differential equation and also to solving nonlinear inte- 
graI equations. Examples of flows whose determination is reduced to 
solving the basic problem are cited. 

w THE GENERAL BOUNDARY VALUE PROBLEM, 

THE BASIC BOUNDARY VALUE PROBLEM 

1.1 .  De te rmina t ion  of a jet  flow in  the p a r a m e t r i c  
p lane .  The Zhukovskii  function.  Those flows whose 
boundar i e s  cons i s t  of solid wal ls  and f ree  sur faces  on 
which the p r e s s u r e s  a re  cons tan t  a re  gene ra l ly  cal led 
jet  flows. Here we shal l  cons ide r  a plane s teady jet  
flow of an ideal  fluid; it is  a lso a s sumed  that  the fluid 
is  i n c o m p r e s s i b l e  and the flow reg ion  i s  s imply  con-  
nected.  As is  well  known, in  o r d e r  to d e t e r m i n e  nil  
the e l emen t s  of such flows, it is  suff ic ient  to find the 
complex potent ia l  ve loc i ty  of the flow w = ~0 + ir at 
eve ry  point z = x + iy of the flow region, that  is,  to 
find the re l a t ion  w = w(z). F ind ing  the re l a t ion  w = 
= w(z) is fac i l i ta ted  if  we in t roduce  the aux i l i a ry  com-  
plex va r i ab le  ~ = ~ + i~, which v a r i e s  in some canon i -  
cal  region,  toge ther  with an aux i l i a ry  function,  and 
seek the re la t ion  w = w(z) in the p a r a m e t r i c  fo rm 

p 
w = W (.(), z = z (~). (1.1) 

The re fo re ,  the r e l a t i on  w = w(z) wil l  be taken he re  
in the fo rm (1.1). We shal l  take e i the r  the upper  ha l f -  
plane o r  the r ight  quadran t  of the upper  ha l f -p lane  as  
the canonica l  reg ion  of va r i a t i on  g = ~ + i~?. It is  con-  
ven ien t  to take the following funct ion as the aux i l i a ry  
function: 

/ t dw ~ F o  I lnl_~_0_~_)+ (~). (1 2) F (~) = +-7 

Here  co o is  some given number ,  V 0 the c h a r a c t e r i s -  
t ic  flow veloci ty,  and F~ the g iven funct ion se lec ted  
so that  F(~) wil l  be ana ly t ic  in the canonica l  r eg ion .  
The funct ion  F([ )  d e t e r m i n e d  by  the equat i ty  (1.2) 
wil l  hencefor th  be cal led the Zhukovski i  funct ion.  Since 
the flow is  steady,  the reg ion  of va r i a t i on  in the c o m -  
plex potent ia l  w = ~o + ir i s  a lways known and, conse -  
quently,  we may  c o n s i d e r  the r e l a t ion  w = w(z) known. 
The l a t t e r  can be r e p r e s e n t e d  in the fo rm 

w = w (~) = ~0 0 f (~). (1.3) 

Here  ~0 is  a p a r a m e t e r  having the d i m e n s i o n  of 
the ve loc i ty  potent ia l  which is  c h a r a c t e r i s t i c  of the 
given flow. Let the Zhukovski i  funct ion be known; 

then, making  use of equal i t ies  (1.2) and (1.3), it is 
easy  to find a function mapping the flow reg ion  onto 
the canonica l  region  of the plane ~: 

(i. 4) 

8| 

�9 

a b 
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For  the complex veloci ty we have, accord ing  to 
(1.2), the e x p r e s s i o n  

dw _ V0e~0(F(~)_Fo(~)) , (1 5) 
dz 

Thus, in order to determine all the elements of the 

flow, it is sufficient to find the Zhukovskii function 

F(~) and the w = w(~). 
1.2 .  The boundary  conditions for the Zhukovskii  

function.  In o r d e r  to de t e r mi ne  the fo rm of the gen-  
e r a l  boundary  value p r o b l e m  for the Zhukovskii  func-  
tion, it  is  n e c e s s a r y  to c o n s i d e r  what condi t ions  wil l  
be sa t i s f ied  by the Zhukovskii  funct ion on d i f fe rent  
sec t ions  of the boundary  of the canonica l  region,  de-  
pending on the p r o p e r t i e s  of the flow to which these  
sec t ions  co r re spond .  Let AB be a pa r t  of the botmdary 
of the flow reg ion  which c o r r e s p o n d s  in  the plane ~ = 
= ~ + iv to the segment  [a, b] of the ~ axis (Fig. 1). 
We shal l  denote the r ea l  pa r t  of F(~) by u and the imag -  
i n a r y  pa r t  by v; hence 

F (~) = u § ~v, ( 1 . 6 )  

and we note, on the o ther  hand, that  

(1.7) 

where V s is the modulus of the velocity, ~ the angle 

of inclination of the velocity to the real axis. Further, 

we shall denote the boundary values F~ on the seg- 

ment [a, b] by F~ We note also that in the flow 

under consideration, the impermeable solid wall and 

the free surface are streamlines. We shall consider 

four cases depending on the form of the segment of 

the boundary AB. 
1) The l ine  AB is  a sol id i m p e r m e a b l e  wall .  We 

set  co o = i and d i r e c t  the axis  so that the angle of in-  
c l ina t ion  of the tangent  to the cu rve  AB wil l  coincide 



20 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI 

with the angle of inc l ina t ion  of the veloci ty ~. We in-  
t roduce the concept of re la t ive  cu rva tu r e  for  the curve 
AB. Let K s (~) be the absolute  value of the cu rva tu re  
of the l ine AB as a funct ion of the angle of inc l ina t ion  
of the tangent  ~. Then  the re la t ive  cu rva tu r e  of the 
curve  AB will  be the funct ion 

K (0)  = K 8 (~(~ - -  @) / K% ( 1 . 8 )  

Here K ~ is  the cu rva tu re  of the curve  AB at some 
point of the l ine,  and ~r the angle of inc l ina t ion  of the 
tangent  at this point .  It is known that  if S is the arc  
length of the curve  AB, then the following equal i ty  is  
val id  for KS(~): 

d~ / dS  = T K :  0 ) "  (1.9) 

Here we take the minus  s ign if ~ dec r ea se s  when S 
is i nc reased ,  and the plus  s ign if  ~ i n c r e a s e s .  On the 
s t rength  of the fact that  AB is a s t r e a m l i n e  for  the ve-  
loci ty and the ve loc i ty  potential ,  the following r e l a -  
t ions  hold: 

dT f on AB; (P = r (~), ~ ~ [a, hi. (1.10) 

F r o m  re l a t i ons  (1 .6 ) -  (1.10), and in t roduc ing  the 
d i m e n s i o n l e s s  p a r a m e t e r  

~, = ~o K ~  (1.11) 

we  find that  F(~) on the segment  [a, by sa t i s f i e s  the 
boundary  condi t ion 

=ReF~ ~ [ a , b ]  (l.12)'* (1.12) 

2) The l ine  AB is, a f ree  su'rface of a heavy fluid.  
Let us take coo = 1 and d i r ec t  the coord ina te  axes so 
that the a c c e l e r a t i o n  of g rav i ty  g wil l  be d i rec ted  
toward the negat ive  d i rec t ion  of the y axis  and so that  
the angle of inc l ina t ion  of the t angen t  to the  l ine  AB 
wil l  coincide with the angle of inc l ina t ion  of the ve loc -  
i ty  ~. Making use  of the Bernou l l i  in tegra l ,  on AB we 
have the equal i ty  

V~v~ ~ + gy  = c - p c ,  (1.13) 

where  P0 is  the p r e s s u r e  on the f ree  su r f ace  and C is 
a cons tant .  On the b a s i s  of obvious geome t r i c  c ons i d -  
e r a t i o n s  we find 

dy/dS = sin @, (1.14) 

We d i f fe ren t ia te  the equal i ty  (1.13) with r e spe c t  to 
S and make  use  of the r e l a t ions  (1.6), (1.7), (1.10), 
and (1.14); then, i n t roduc ing  the d i m e n s i o n l e s s  p a r a m -  
e t e r  

= g %  / V03 ( 1 . 1 5 )  

we obta in  for  F(~) the bounda ry  condi t ion  

d-~du - -  )~ I / ( ~ )  [e ~aeF~ s i n  (v - -  I m  F ~ (~)) e -s~ = 

--~ ReF~ ~ [ a ,  bl. (1.16) 

3) The l ine AB is  a f ree  sur face  subjected to capi l -  
l a r y  fo rces .  We set co o = - 1 .  Let Pl be the p r e s s u r e  
over  the free sur face  and q the coeff icient  of sur face  
tens ion ;  then, as is  known [1], 

P* - -  Pc = q K~ (~})': (1.17) 

In this  case  the Bernoul l i  i n t eg ra l  is of the fo rm 

P l  - -  Pa = I/2P (Vo 2 - -  V$ 2) (1 l  1 8 )  

F r o m  the re l a t ions  (1.6), (1.7), (1.9), (1.10), 
(1.17), and (1.18), and in t roducing  the d imens ion l e s s  
pa r ame te  r s 

k = pV0(Po / q, ~ = 2 (Pl --  Pc) / pV0* (1.19) 

we see that F(~) on the segment  in, by sa t i s f ies  the 
boundary  condi t ion 

du 
--~ :F k]] '  (~) ] [sh (Im F ~ (~) - -  v) + 

t + -5- ~ exp (Ira F ~ (~) - -  v)] = Re F ~ (~), 

~ [a, b]. (1.20) 

4)  The l ine AB is  a solid p e r m e a b l e  wal l  a long 
which the veloci ty  potent ia l  r e t a in s  a cons tan t  value .  
In this  case,  it  i s  obvious that  

Vs=  ~-~r ] onAB: ~P=--i(Po](~) ,  ~ [ a , b ] .  (1.21) 

We set  coo = 1. Making use  of the equal i ty  (1.21), 
a lso the r e l a t i ons  (1 .6 ) -  (1.9), we find that  on [a, b] 
F(~) sa t i s f i e s  the boundary  condi t ion 

du 
d~ :~ )q / '  ( ~ ) l e-Xm~~ K ( u + ~ z - -  R e F~ (~ ) ) e~ = 

= ReF ~ ~ [a, b], (1.22) 

where  the p a r a m e t e r  X is  de t e rmined  by equal i ty  (1.12). 
An analysis of the boundary conditions (1.13), (1.17), (1.21). 

and (i. 23) makes it possible to establish the form of the general bound- 
ary problem for the Zhukovskii function including all stream flows 
whose boundaries consist of solid (generally speaking, curvilinear) 
walls and free surfaces which may be subject to gravitational or capil- 
lary forces. Indeed, if we take the upper half-plane as the canonical 
region of the variable ~ = ~ + D}, then every solid wall or free surface 
of the plane of the flow will correspond to a segment on the real axis 

(finite ot infinite); on the other hand, the equalities (1.12), (1.16), 
(1.20), and (1.22) imply that the nonlinear part of the boundary prob- 
lem for the function F(~) = u + iv on each such segment is the product 
of two functions, one of which depends only on u and the other only 
on v, the linear part contains the derivative in respect to ~. or u, or 
v. If we take these two facts into consideration, also the possibility of 
arbitrary selection of the function F~ in (1.2), then it is easy to ver- 
if), that any boundary value problem for the Zhukovskii function, with 
the assumptions made above, will be a special case of the general 
boundary value problem. 

1 .3 .  The ge ne r a l  n o n l i n e a r  p rob l em.  P r o b l e m  1 .1 .  
The p r o b l e m  i s  to find the funct ion F(~) which is ana -  
ly t ic  in  the upper  ha l f -p lane ,  bounded at inf ini ty,  and 

cont inuous  on the rea l  axis  sub jec t  to the boundary  
condi t ions  



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 21 

1.4-u,, du t--u,~ dv 
2 d~ 3 -  2 , ~  - -  

= z ~  (r a ~ (u + ~ (~)) V ~ (v 3- ~ (~)) + ~, (~), (1 .23)  

~ Z ,  ( v = i ,  2 . . . . .  n), U 6,~- ( - - a t ,  co); u , - - : ~ : t ,  

whe re  a~ (~), ~, ($), 7~ ($), 6,(~), U ~ (u 3 -a )  and V ~ (v 3- 6) 
a r e  given funct ions of t h e i r  own a r g u m e n t  s . 

It  i s  n a t u r a l  to ca l l  P r o b l e m  1.1 homogeneous  i f  
F(~) - 0 is  a so lu t ion  of  th i s  p r o b l e m .  It  i s  obvious 
tha t  the fol lowing condi t ion  holds  fo r  the homogeneous  
p r o b l e m :  

x ~  (~) u~ (a~ (~)) v~ (~ (~)) + ~ (~) - 0 

(v = t, 2 . . . .  .n). (1.24) 

Hencefor th ,  the  p a r a m e t e r s  X~ wil l  be denoted by 
X. The coe f f i c i en t s  of  the  p r o b l e m  m a y  inc lude  some  
r e a l  p a r a m e t e r s  el ,  e2 . . . . .  em, that  is ,  g e n e r a l l y  
speaking,  

~ (~) = ~ (~, ~), ~ (~) = ~ ,  e), 

~ (~) = ~ (~, ~), ~ (~) = ~ (~, ~), (1 .25)  

w h e r e  e deno tes  the  s e t  of  p a r a m e t e r s  el ,  e 2 . . . . .  e ra .  
In the  g e n e r a l  p r o b l e m  f o r m u l a t e d  the  p a r a m e t e r s  
and e a r e  a s s u m e d  to be g iven.  

1 .4 .  The so lu t ion  of  the  h y d r o d y n a m i c  p r o b l e m .  
The b o u n d a r y  va lue  p r o b l e m  with add i t iona l  condi t ions  
i m p o s e d  on the p a r a m e t e r s .  A s o l u t i o n  of  the bounda ry  
va lue  p r o b l e m  (1.23) f o r m u l a t e d  above wi l l  not, gen-  
e r a l l y  Speaking,  y ie ld  a so lu t ion  of the  h y d r o d y n a m i c  
p r o b l e m  to which i t  c o r r e s p o n d s  s ince  the f o r m u l a -  
t ion  of  the  m a j o r i t y  of  j e t  flow h y d r o d y n a m i c  p r o b -  
l e m s  i s  such tha t  the  p a r a m e t e r s  X and e a r e  a s s o -  
c i a t ed  by s o m e  r e l a t i o n s h i p s  with the  m~known func-  
t ion .  A c c o r d i n g  to i t s  o r ig in ,  the  l a t t e r  m a y  be geo-  
m e t r i c a l  o r  p h y s i c a l  in n a t u r e .  A p a r t  of t h e s e  r e l a -  
t ions  a r e  r e p r e s e n t e d  by a t r a n s c e n d e n t a l  equa t ion  of 
the  f o r m  

k~ = v~/%~ (u, v, e) (v = i, 2 . . . . .  n), (1.26) 

whose  n u m b e r  i s  u s u a l l y  equal  to the  n u m b e r  of p a -  
r a m e t e r s  X. He re  ~v a r e  g iven  quan t i t i e s  and X~(u, 
v, e) g iven  func t iona l s .  In the  g e n e r a l  c a s e ,  the r e -  
m a i n i n g  r e l a t i o n s  a r e  i m p l i c i t  t r a n s c e n d e n t a l  equa-  
t ions  of the  f o r m  

X~(u, v, 8) = 0  (~--~1,2 . . . . .  n), (1.27) 

whose  n u m b e r  i s  equal  to the  n u m b e r  of p a r a m e t e r s  
s .  E x a m p l e s  of r e l a t i o n s  of the  f o r m  (1.26), (1.27) 
wi l l  be g iven  be low when we c o n s i d e r  j e t  f lows with 
a c u r v i l i n e a r  wa l l  and j e t  f lows of  a heavy  fluid [(2.11),  
(3.5),  and (3.11)] .  

Thus ,  a so lu t ion  of  the j e t  f low h y d r o d y n a m i c  p r o b -  
l e m  i s equ iva l en t  to the  fo l lowing b o u n d a r y  va lue  p r o b -  
l e m  with cond i t ions  for  the  p a r a m e t e r s  X and a. 

P r o b l e m  1 .2 .  F ind  a so lu t ion  of  the  g e n e r a l  bound-  
a r y  va lue  p r o b l e m  (1.23) under  the  a s s u m p t i o n  tha t  

the  p a r a m e t e r s  X and e a r e  a s s o c i a t e d  with the un- 
known function by m e a n s  of addi t iona l  condi t ions  (1.26), 
(1.27).  

A n a t u r a l  way for  so lv ing  P r o b l e m  1.2 is  f i r s t  to 
so lve  the  g e n e r a l  bounda ry  value  p r o b l e m  (1.23), a f t e r  
which the obta ined so lu t ion  F (~) = F (~; ~, e) = u (~, ~; 
~, e) 3- iv (~, ~l; ~, e) i s  subs t i tu ted  into r e l a t i o n s  (1.26), 
(1.27), and then the s y s t e m  of  non l inea r  t r a n s c e n d e n -  
ta l  equa t ions  for  X and e obta ined  as  a r e s u l t  of the  
subs t i tu t ion  i s  so lved .  

1 .5 .  The b a s i c  bounda ry  va lue  p r o b l e m .  Since so lv -  
ing the g e n e r a l  bounda ry  va lue  p r o b l e m  invo lves  d i f f i -  
cu l t i es ,  we sha l l  i s o l a t e  i t s  s i m p l e s t  p a r t i c u l a r  p r o b -  
l em which at  the s a m e  t i m e  r e t a i n s  the  p r i n c i p a l  s p e -  
c i f i c  f e a t u r e s  of the g e n e r a l  p r o b l e m ,  both m a t h e m a t i -  
ca l  and p h y s i c a l .  

We sha l l  obta in  such a p r o b l e m  i f  we se t  e i t h e r  
Y ~ (u 3 - a ,  (~)) ~ 0 o r  V ~ (v q- 6, (~)) ~- 0 i n  (1.23) on a l l  
s e g m e n t s  av.  P h y s i c a l l y ,  th i s  c o r r e s p o n d s  to the c a s e  
in which a l l  s ec t ions  of the b o u n d a r y  c o r r e s p o n d i n g  to 
j e t  flow except  one c o n s i s t  of sol id  r e c t i l i n e a r  w a l l s  
and f r e e  s u r f a c e s  not ac ted  upon by  e x t e r n a l  f o r c e s .  
In th is  ca se ,  i t  i s  obvious tha t  the  funct ion F~ in 
equa l i ty  (1.2) can  a lways  be e x p r e s s e d  so that  e i t h e r  
u = 0 o r  v = 0 on a l l  s e g m e n t s  excep t  one, and without  
l o s s  of g e n e r a l i t y ,  we can take  the  s e g m e n t  [ - 1 ,  1] as  
the  l a t t e r .  Thus,  we a p p r o a c h  the p r o b l e m .  

Problem i. 3. The problem is to find the function 

F(~) = u + iv which is analytic on the upper half-plane, 

bounded at infinity, and continuous on the real axis, 

with the boundary conditions 

(l  + ~ )  v + (i - -  m) ~ = 0, 
( 1 . 2 8 )  

~ ,  •  (v=l,2 . . . . .  ~ ) ,  

d~ d~ = x~ (~) u (u + ~ (~)) v (v + ~ (~)) + 8 (r 

~ [ - - l , i ] ,  ( 1 . 2 9 )  

w h e r e  a (~), ~ (~), 7 (~), 6 (~), U (u + a ) , V  (v 3- 6) a r e  
g iven  funct ions  of t h e i r  own a r g u m e n t s  and X i s  the 
g iven  p a r a m e t e r ,  

The  b o u n d a r y  cond i t ions  of th i s  �9 p r o b l e m  con-  
t a in  fou r  coe f f i c i en t s :  ~(~), fi(~), T(~), and 5(~) and 
one p a r a m e t e r  (which i s  c o n s i d e r e d  as  be ing  given) .  
If  the  c oe f f i c i e n t s  con ta in  r e a l  p a r a m e t e r s  ~, tha t  i s ,  
i f  

(~) = ~ (~, ~), 6 (~) = 6 (~, ~), 
(1 .30)  

t h e n  they  a r e  c o n s i d e r e d  g iven .  The fo l lowing cond i -  
t ion ho lds  fo r  the  h o m o g e n e o u s  p r o b l e m :  

~, ~ ( i )u(a( t ) )  v (6(~)) + ~ (i) - 0. ( 1 . 3 1 )  

When a so lu t ion  of  the  g iven  p r o b l e m  con ta ins  a r b i -  
W a r y  c o n s t a n t s ,  i t  i s  n e c e s s a r y  to i m p o s e  add i t iona l  
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conditions on the desired function; their  selection will 
depend on the physical peculiarities of the given flow. 
As one of such conditions, we can take the equality 

u (~0, 0) = 0, ~o ~ [ - -  1, I I .  ( 1 . 3 2 )  

In order  for the basic problem to yield a solution 
of the corresponding hydrodynamic problem, it is nec- 
essa ry  to satisfy the additional conditions (1.27) and 
one condition of the form 

~ = "~ ] x (U, V, ~ (1.33) 

where T is a given parameter  X(u, v, e) a given f(mc- 
tional. Thus, a solution of problem (1.28), (1.29) is 
equivalent to solving the boundary value problem with 
additional conditions imposed fin k and s. 

Problem 1.4.  The problem is to find a solution of 
the basic problem (1.28), (1.29) with the assumption 
that the parameters  X and s are  connected with the 
unknown function by the additional conditions (1.33), 
(1.27). 

A natural way to solve problem (i. 4) is f irst  to 
solve the basic problem (1.28), (1.29); after  this, 
the obtained solution /7 (~) = F(~; L, e )=  u ( | ~ ;  ~, ~)+ 
+ iv (~, ~l; ),, s) is substituted into the relationships 
(1.33), (1,27), and the sys tem of equations obtained 
is solved for t and s. 

w REDUCTION OF THE BASIC AND THE PRINCI- 
PAL BOUNDARY vALUE PROBLEMS TO NONLINEAR 
INTEGRO-DIFFERENTIAL AND NONLINEAR INTE- 
GRAL EQUATIONS 

Let u(~) be the real part  of F(~) on the segment 
[ -1,  1] of the ~ axis, that i s , 'we  set 

u (~) = u.(~, 0), ~ ~ [ - - t ,  t ~ i -  ! (2 .1)  

We shall consider that the function u(~ ) is known; 
then determination of F(C) is reduced to solving the 
mixed problem or  the Dirichlet problem for an ana- 
lytic function. We shall assume that in the last case, 
the condition F(oo) = 0 is imposed on F(~). If we make 
use of known solutiorm of these problems [2, 3], then 
it is not difficult to obtain an integral representat ion 
of F(~) through the function u(~) in the upper half- 
plane. We introduce an integral of the form 

~ ( ~ 1 ; )  = - - ~  - ~ - ~ ,  ~ : 
- - 1  

where w(~) is a real  function and w(~) a function which 
is analytic everywhere in the upper half-plane except, 
perhaps, at an infinitely distant point at which we as-  
sume there is a pole for the function and which sat is-  
fies the condition l i m e  (~) = to (~) when ~ - .  ~, ~ 

[-- t ,  t1. We emphasize by the notation I1 (ul~) that 
this integral  is not only a function of the point ~, but 
also an operator  with respect  to u(f). When it is nec-  
e s sa ry  to s t ress  only one of these factors  or  to note 
the dependence of this integral on co (~), then we shall 
also require  the notation ~ (~), flu o r  fl (u, to I~) for it. 

ZHURNAL PRIKLADNOI MEKtIANIKI I TEKHNICHESKOI FIZIKI 

In the special case, when co (~) ---- 1 o r  co (~) = 
-- ~ ~ r ' ~ ' ~ ,  we shall denote this integral through 

r I~) = t-n-i" i~(~--t)~ t i t ' -  ~ @ [~ t ,  11. 
-, (2.3) 

�9 1 

�9 I - t - - {  ]:i----roW ' ~ [ - - t ,  t1. 
--1 

We shall understand V ~ -- t to mean the branch 
which is analytic on the ~ axis of the plane ~ cut along 
the segment [-1,  1] and such that~f~ ~ -- i ---- ~ -b 0 (~-~) 
for large I~1. Along with the integral ~2 (ul;), we in- 
troduce the singular integral 

1 

T ( u l r  ~ j t - 5  G0) ' r  t1 (2.4)  

which is understood in the sense of the Cauchy princi-  
pal value. For  this, we shall also make use of the no-  
tation T (~), T u, T (u,r having the same sense as in 
the corresponding notation of the integral ~ (ul ~). In 
the two special cases for giving w(~) noted previously, 
we shall denote the integral T(u I~ ) through 

1 

-1 (2.5) 

/ ( u t ~ ) =  ~ ,  i u(t) dt t--~ V-~-_-~' ~ [ - - t ,  t1. 
- I  

If we make use of the introduced notation, then the 
above indicated integral representation F([) through 
the function u(~) can be represented in the general 
case (with the assumption made above) in the follow- 
ing form [2, 3]: 

F (;) = ~ (ul ;)i  (2 .6)  

however, if the order  of the pole co(~) is equal to n, 
then u(~) should satisfy the conditions 

1 

I U(t)t~-l~d~t(t) =0 ( k = t ,  2 . . . . .  m). (2.7) 

w h e r e  m = n - 1 i f  F(~) i s  bounded  on infinity and m = 
= n if F(oo) = 0. If we pass  to the limit in (1.6), (2.6) 
with C --- ~, I~ I -< 1, then make use of the Sokhotskii 
formulas,  then it is not difficult to verify that the real  
and imaginary parts  of F(~) on the segment [ -1,  1] of 
the ~ axis are connected by the relations v = -T(ul ~). 
We now substitute the expression found in (1.29). Then, 
for determining u(f ) we obtain the nonlinear equation 

u' (~) = xv (~)v (u (~) +a (~))v (- r (u[ ~) + 

+I ~ (~)) + 8 (~), ~ ~ [-1, 1I (2. s) 

which is integro-differential  and singular. According 
to (1.32), a solution of this equation must  satisfy the 
condition 

(~d = 0, ~0 ~ [--1,  t l  (2 .9)  
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and at t imes ,  condit ions (2.7), if the solut ion of the 
bas ic  boundary  value p rob lem is to sa t i s fy  these  con-  
di t ions.  Henceforth,  un less  we state otherwise,  we 
shall  a s sume  that  the solut ion of Eq. (2.8) sa t i s f ies  
only condit ion (2.9). Thus,  solving the basic  boundary  
value p rob lem is  reduced to solving E q .  (2.8). Thus, 
it will  be cal led the bas ic  non l i nea r  i n t eg ro -d i f f e r e n -  
t ial  equation.  The funct ions  a(~), /~(~), y(~), and 6(~) 
a re  na tu ra l l y  cal led the coeff ic ients  of E %  (2.8). It 
i s  na tu ra l  to cal l  Eq. (2.8) homogeneous if  the coeffi-  
c ien ts  sa t i s fy  the re la t ion  (1.31). In the genera l  case,  
the coeff ic ients  depend on the p a r a m e t e r s  a, that is,  
the r e l a t ions  (1.30) hold. The p a r a m e t e r s  k and e a re  
cons idered  given.  Genera l ly  speaking,  solving Eq. 
(2.8) will  not be equiva lent  to solving the c o r r e s p o n d -  
ing hydrodynamic  p rob lem.  In ~)rder for  a solut ion of 
Eq. (2.8) to be equivalent  to the hydrodynamic  p rob-  
lem,  or, equivalent ly ,  the bas ic  boundary  value p rob-  
l em with addi t ional  condi t ions  imposed on the p a r a m -  
e te r s ,  it  is e s s en t i a l  that  this  solut ion sa t is fy  the s y s -  
t em  of n o n l i n e a r  funct ional  equat ions obtained by sub-  
s t i tu t ing  the funct ions u (L ~; k, e), v (~, ~; )~, e) of 
the equal i ty  (2.6), where  F (~)= u(~, ~1; ~, e) + iv(~,~; 
k, e), in the r e l a t ionsh ips  (1.33), (1.27). 

2 .2 .  T r a n s f o r m a t i o n  of Eq. (2.8) to n o n l i n e a r  in te -  
g ra l  equat ions .  In some cases ,  Eq. (2.8) can be r e -  
duced to a n o n l i n e a r  i n t eg ra l  equation. We shal l  con-  
s ide r  t h ree  such ea se s .  

1) In case  the der iva t ive  u'(~) is  in tegrable ,  let  the 
opera to r  T(u]~)be  r ep re sen t ed  in the form 

T ( u [ ~ ) - ~ T ' ( u ' I ~ ) ~ - - , i  u' ( t )H(~ (2.10) 
- 1  

where  H(~[~, t) is a F redho lm type kerne l ,  that  is a 
funct ion which is  quadra t i ca l ly  s u m m a b l e  in the square  
- 1  -< ~, t-< 1. Moreover ,  l e t  M(u[~) be the opera to r  
i n v e r s e  to T(u[~). Then, if  we in t roduce  the funct ion 
v(~) = -T(u[~) ,  it is easy  to show that  with the a s s u m p -  
t ions  that have been made,  solving Eq. (2.8) is  r e -  
duced to solving the equat ion 

I 

.v(~) = ~,% ~'(t)H(~[~, t) U( - -M(v l t ) - [ -a ( t ) ) .  
- 1  

�9 V (v (t) + ~ (t)) dt -}- 6" (~), 

6"(~)=T*(6I~ ), ~ [ - - 1 , 1 ] .  (2.11) 

2) Let the equal i ty  (2.10) and the following hold: 

a (~) =~a = const, 6 (~) =--0. 

In this  case ,  if we in t roduce  the funct ion Q(u) de-  
t e r m i n e d  b y  the equa l i t i e s  

i du dR -1 (u) (~ )  = ~ ) ,  Q (~)  - du 

o 

where R-t(u)  is the o p e r a t o r  i n v e r s e  to R(u), it is not 
diff icult  to ver i fy  that so lv ing  Eq. (2.8) is reduced to 
so lv ing  the equat ion 

1 

= ~ l 'r (t) H (o) I ~, t) V (v (t) -- [3 (t)) Q. 

t 

~ E  [ - - l , t ] ,  (2.12) 

where  v(~) is the same function as in Eq. (2.11). 
3) Let U(u + o~) not depend on u, that is,  

g (u (~) + a (~)) = u (a (~)) = u (~). 

Then, Eq. (2.11) takes the form of a H a m m e r s t e i n  
type equation: 

v (~) = ~ l ~ , *  (t) y (v (t) + ~ (t)) H (co i l  t) d~ + 6* (~), 

~ ~ [--I,I] ,  ~* (D = ~ (Du (D. (2.13) 

Remark .  If we make use of the known fo rmulas  for 
i nve r t i ng  a Cauchy type in tegra l  [2, 3], it  is easy  to 
es tab l i sh  that the following formula  holds for  the op- 
e r a t o r  M (v i ~) = T -1 (v I ~), included in Eq. (2.11): 

M(v[~)=T(v , r  r (~) = %(~)~(~) 

in  which the value of the cons tan t  C and the form of the 
function )/(~) depend on the behav ior  of '~(~) and the un-  
known function u(~) of Eq. (2.8) at the ends of the seg-  
men t  [ -1 ,  1]. If the ra t io  u(~)/w(~) has  in tegrab le  
s ingu la r i t i e s  at both ends of the segment  [ -1 ,  1], then 
X (~) = i / ] / i  - -  ~2, and the cons tan t  C is de t e rmined  

f rom the condi t ion (2.9). If the ra t io  u(~)/w(~) is bound-  
ed on both ends of the segment  [ -1 ,  1], then ~ (~) = 
= ] / i  --  ~ and C = 0; however,  the following condi t ion 
should be sat isf ied:  

i u (t) dt O. 
-1 o) (t) V t - -  t'. 

In case  the ra t io  u(~)/0)(~) has an in tegrab le  s ingu-  
l a r i t y  at the point  8 = 1 or  ~ = - 1 ,  then, accordingly ,  
X (~) = V ~ / 1 / t  - -  ~ o r2  (~) = V - ~  / V I  + ~ and 
C = 0. It is  also not diff icult  to wr i te  an in t eg ra l  r ep -  
r e s e n t a t i o n  for  the Zhukovski i  function F(~) in t e r m s  
of the funct ion~ (~) = --  T (ul~) = Im F (~), ~ [-- i, i]. 

2. 3. Reducing the general problem to a system of nonlinear equa- 
tions. Solving the general problem can be reduced to solving a system 
of nonlinear integro-differentiai equations. We shall show this through 
two examples. 

As the first example, we can cite the probIem of discontinuous 
flow around a finite number of curvilinear arcs in accordance with the 
Kirchhoff scheme. This problem was considered by L. I. Scdov and 
was reduced by him to a system of nonlinear integro-differential equa- 
tions [1, 4]. 

As the second example, we shall consider cavitational flow of a 
heavy fluid along a plate in accordancc with the Zhukovskii-Roshko 
scheme [1] with the assumption that the plate is oriented perpendicu- 
lar to the velocity at infinity and that the wails which constrain the 
stream are parallel to the velocity at infinity. The flow under consid- 
eration is shown in Fig. 2, where the correspondence of points in the 
plane of the flow aud the auxiliary plane is indicated. \Vii[I this cor- 
respondence, the following formula for the complex potential will 
hold: 
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u, ---- (Po (~ - -  sos ~oP.  

I 
F ~  =-2  ( v ~  + V ~ ) .  

- r  r  
eo~ ~o = g ~  + Y W o "  

r I g g 8 

Fig. 2 

We set Wo = 1. V0 = Voo in equal i ty  [ 1 . 2 )  and choose the funct ion 
F*(~) so that  it satisfies the conditions 

0 . . . . .  < ~ < - - b ,  a < ~ <  o,,, 

Im F ~  __1/,~, - - t  < ~ < S O $ ' ~ ,  

V,n, cos eo < ~ < t ,  

o t i n  (Voo/Vs), - - b ~ < - - ~ ,  
R e F  (~)=lln(Voo/Vl), l<.~..<a, " 

where V~ and Vz are the veloci t ies  at the points C and D, respect ively,  
then we introduce the functions de te rmined  by the equal i t ies  

u (~, 0) = u l  (h (~)), 

h(~)  = (a + i - -  2 ~ ) / C a - -  i )  i < ~ <t~.  

u (L  0) = u,  (h  (g)), 

1,(~) = - -  ( b +  i + 2 ~ ) / ( b - -  ]) - -  b ~ - - l .  

Then,  the following in tegral  representat ion will  hold for the 
Zhukovski i  function: 

~ [  a -1 
C ~l (il (t)) dt + C u ~ ) )  dt, ] ,  

a) (;) = "V'(;~ - -  1) ( ;  --" a) ( ;  -]- b ) .  ' 

Here we take tha t  branch which takes tea t  posi t ive values on the  
s egmen t  (a, co) of the ~-axis  for w(~). We shall  denote by ~ g  ~) and 
~z(C) those branches of the functions 

~o~ (~) = i l / ' ( ;  ~ - -  t )  (~ - a0 (~ - b 0 ,  

a + 3  2 b + a + l  al -- bl :--- , 
a - - l '  a - - t  

~% (~) = - -  i ]/'(~Z - -  t) ( ;  + a,) (;  + bs), 

b + 3  2 a + b + t  
b, = U ~ - ] ' - '  a~ = b - -  f " 

which take purely imaginary  posit ive or nega t ive  va lues  on segments  
(b~, ~o) or (1, co), respect ively ,  and by gl(g*) and pz(g*) the real  func-  
t ions 

~ x ( ~ , ) =  _ a + b + 2 - - ( a - - t ) ~ *  
b - - I  

~ . ~ ( ~ . ) = a + b + 2 - -  ( b - - t )  ~* / 

Making  use of  the nota t ion in t roduced and boundary condi t ion 
(1 .16) ,  it is not diff icul t  to obta in  the following sys tem of equat ions  

Z H U R N A L  P R I K L A D N O I  M E K H A N I K I  I T E K H N I C H E S K O I  F I Z I K I  

for de termining ul(g*) and us(g*), where g* = f l(g)  if i -< { -< a, and 
g* =f~g) if-b-~ g-~-l: 

ux' ( ~ * ) =  ~.~T~ (~*) e -~(~*)  s in  iT (ux, toll ~*) --  

- - i f l  (u,, to, I I-t0 -1- ,3a {~*)1, (--1 ~ ~* ~ t ) ,  

u, '  (~*) = s (~*) e -su'(~*) s in  iT (us, to, I ~*)'-- 

- - i n  (ux, o)~ I B,) + B~ (~*)1 ( - -  t .% ~*..< 1). 

g% ( L _ ~  a + l  ~ ) ,  ~ = p-~s, "a (~*) = (a - -  t) ~* - -  - - ~  + cos 

BJt (~*) = - -  Im F ~ [h - :  (~/")}~. 

g% ( ~ _ 1  b + l  . ) 
~z = Vs--" ~ , ~f,(~*) = ( b ~  t) ~* + ~ ' - - -  + sos eo , 

II~ (~*) = - -  Ira F ~ [h - l  (~*)]. 

The  solution of system (2.14)  must  satisfy the condit ion ul(0) = 0, 
u2(0) = 0. As the basic given parameter ,  we shall  take the inverse of  
the Froude number  

�9 = g h / v 2  

where h is the length of the p la te .  In order for the system (2 .14)  to 
provide a solution of the hydrodynamic  problem under considerat ion 
with a given r,  i t  is essential  tha t  the  following condit ions be sat is-  
fied: 

( F ( ~ ) - - F  ~ = 0  for 

lira I exp [2 'lira (it ( L  0) - -  ae F ~ (U)I _ 
-I~:~< cos eo 

-- exp [2 lira (u (~, 0 ) - -Re  F ~ (~ ) ) ]=2~ ,  

cos %< ~<I 

1 

2~,li ~ (~ - -  cos s0) sxp (F ~ (~) - -  u (~, 0)) d~ -k 
-1 

+ z exp [3 lira (Re F ~ (~) - -  u (~, 0)1]--(h 

COS to< ~<1 

2X, i i (~ - -  sos Co) exp (P~ (D - -  u (L 0)) ~ + 
-1 

+ z exp [3 lira (Re F ~ (~) - -  u (~, 0))1 = 0 .  
~-~-1 

-1<~,< cos r 

Condit ions (2 .15)  yield five real  t ranscendenta l  equat ions for de-  
t e rmin ing  the  p a r a m e t e r s k l ,  ~2, eo, 8 1 =  i / a  ande  s =  i / b ( O ~ e l ,  
e , <  i). 

'IS' I | 
Fig. 3 

w Examples  of  jet flows whose de te rmina t ion  is reduced to solv- 
ing the  basic  boundary va lue  problem.  In the  genera l  case,  d e t e rmi n -  
ing a jet flow is reduced,  as can  be seen from the foregoing, to solv-  
ing the genera l  boundary va lue  problem;  however,  de te rmin ing  some 
whole classes of  jet flows is reduced to solving the basic boundary va l -  
ue problem.  Here we give three classes of jet flows. 

8. I. Jet flows of a weightless fluid with a cttrvillnear wall. Let us 

consider a flow whose boundaries consist of a finite number of n reed- 

linear walls, one curviliuear wall, and a free stream coinciding with 

it; there are no stagnation points on the curviliuear wall. Wc shah di- 

rect the coordinate axis as shown in Fig. 3, which shows a part of fl~c 
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boundary of the flow consisting of the curvilinear wali AB, also the 
rectilinear segment and the free stream BC adjacent to it.  We shall 
determine the relative curvature K(~) of the arc AB from the equality 
(1.8) where ~ro and K ~ are the angle of inclination of the tangent and 
the curvature of the wall at point A, respectively. We shall assume 
further that K(&) is an even function, which does not restrict general -  
ity, since it can always be extended from a region of positive values 
of the argument to a region of negative values (or vice versa) in an 
even manner. We shall take as the canonical region of variation in 

the right quadrant of the upper half -plane in accordance with the 
points shown in Fig. 3 in which all recti l inear boundaries of the flow 
are transferred to the imaginary ~ axis so that the segment ou (v = 
= 1 ,  2 . . . .  , ~) of the ~1 axis corresponds to each rectilinear section of 
the flow boundary. The angle of inclination of the velocity on a rec-  
t i l inear segment of the flow velocity corresponding to the segment a~ 
will be denoted by Ov (u = 1, 2 . . . . .  n). We set ~v 0 = i in equality (1.2)  
and take 

where the function F d ~) satisfies the conditions 

t% Fo (i~l) = t~,  ~1 ~ o~ (v = t ,  2 . . . . .  n); 

~ m F 0 ( g ) = 0 ,  g ~ [ t , o ~ ] .  

Now, we also introduce the function 

, i ( ~ ) = , , ( ~ ) ( ~ ' ~  - ~ ) ~ e - I m F . ( ~ ) ,  ~ [ 0 .  1] 

then extend it to segment [ -1 ,  0] evenly and denote the function con- 
structed in this way, varying on the segment [ -1 ,  1], again by y([) .  

We now extend the function F(g) which is analytic on the entire 
surface of the half -plane,  considering that it should satisfy condition 
(1.12); then we obtain for determining F(g) the boundary value prob- 
lem 

v = 0 ,  [ E~[ ~ [~ , o~]; 

du 
d~ -- ~ ( ~ ) g ( ~ ) ~ '  ~ [ - - ~ , ~ l ,  (3. i )  

where the parameter  X is given by the equality ( 1 . 1 t ) .  The problem 
obtained here is a special  case of the basic problem when z = 1, 
U (u -Jc" a) = K (u), V (v "}" ~) = e v. In this case, the integral  repre- 

sentation (2 .6)  is of the fo rmF ($) = !F (u I ~), ~ ~ [ - -  1,11 for F(g); 
from this v = - -  I (u [ ~), g ~ [ - -  t ,  1], and, consequently, solving 
the problem obtained here is reduced to solving the equation 

u'(~)=~.y(~)K(u(~))e -I(u[K), ~ [ - - t ,  t1 (3.2)  

under the condition u(0) = 0, an odd solution being sought. We shall 
take the following quantit ies as the given geometr ic  parameters:  

"~=K~ % = L v / S  . (w= 1 . . . . .  n). (3 .3)  

where L u are the lengths of  recti l inear segments which correspond in 
the g plane to the segments c~v on the 7/ axis. As a physical pa rame-  
ter, we take the quantity 

xo----2(pco--po)/pVoo~=Vo~/Voo~--t, (3 .4)  

which is generally cal led the cavitat ion number;  here P~o, P0, Voo, 
V0 are the pressure and velocity at infinity and at the free stream, 
respectively.  We shall make use of ~v and ~lv+l to denote the ends 
of the segments a v (~ = 1, 2 . . . . .  n) and ~10 a point on the ~/ axis which 
corresponds in the plane of the flow to an infinitely remote point.  We 

introduce the functions 

- -  t ~ 2n I m  P~ [bl) "r, (n) - n -2~ (~ + g ~  1' (in) ~" 

~ l ~ e ,  ( v = t  . . . .  , n ) .  

Making use of  the notation introduced here, it is not difficult to 
obtain the relations 

It 

a 

v v X ( ' ~) - -  ~,~ i v , e') = O, 

"~v+X 
X ~ ( ~ , 8 ) -  - - ~ I%(q) Je~(~ ( ~ = i  . . . . .  n)b (3 .5 )  

~v 

• = ~q~.a (! q_ Vi---~os)~,, exp ( - -  2Ira Fo ( i~)  + 2v (0, ~ ) ) .  

in which the functions y(g), 7v(~), and the quantities ~]v (v = 1, 2 . . . .  
. . . .  n) depend, in general, on the parameters ~. Relations (3.5) are 
additional conditions imposed on the parameters X and g which must 
be satisfied by a solution of problem ( 3 . 1 ) i f  it is a solution of the 
hydrodynamic problem with given parameters (3, 3) and (3.4).  We 
shall write the integral equation for v ( g ) =  - -  I (u I g).In this case 
we note that when u(g) is an even function which is bounded and does 
not vanish at the ends of the segment [ -1 ,  1] and u[0] = 0, the op-  
erator which is the inverse of I(u]g) will be 1-1 (u [ g) = - -  J (u t g) 
(refer to tile comment  in regard to 2.2 in w We also not that it is 
not difficult to obtain the following formula for I(ulg) by integrating 
by parts: 

I (u l~)~-- -  i u'(t) HC~,t)dt, 

t I t - - ~ l  
H ( ~ , t ) = - - ~ - l n ~ _ ~ t q _  V ' ( t - - ~ ) ( t - - t ~ ) "  (3 .6)  

We substitute u '( t)  from Eq. (3.2)  into (3.8) and introduce the 
function v (~)!= - -  l {u  I g). We then obtain the integral  equation 

(E,) = ~ i ~ (t) H (L t) g ( ]  (v I t)) ~t(t)'dl I 

which is a special case of Eq. (2.11).  
I f  we take into consideration that Re F (g) = v (~, 0) = v {g), 

g ~ [ - -  t ,  t1, and make  use of the Schwarz formula, then it is easy 
to obtain the integral  representation F (~) = r (v [ ~) for the function 
F(g). 

8.2. Jet flows of a heavy fluid with recti l inear boundaries. Let us 
consider a flow of  a heavy fluid whose boundaries consist of a finite 
number  n of recti l inear solid walls and one free surface. We shall di-  
rect the y axis vertically upward. As the canonical  region of the vai l -  
able ~, we shall take the upper ha l f -p lane  with a correspondence of 
points such that the free surface wii1 correspond with the segment  [ -1 ,  
1] on the g axis so that the remaining part of the real axis is divided 
into segments o v (v = 1, 2 . . . . .  n), each of them corresponding in the 
plane of the flow to a recti l inear section of the boundary with the angle 
of inclination of the velocity along it ~9~ (v = 1, 2, . . . ,  n). We shall 
set a; 0 = 1 in (1.2)  and choose the function F~ so that it will satisfy 

the conditions 

Im F ~ (~) = "~v, ~ ~ % (~ = 1 . . . . .  n); 

~ e  ~" (~) = 0, ~ ~ I -  i ,  i ] .  (3 .7 )  

Then, taking condition (1 .16)  into account and introducing the 

function 

�9 ~ (~) = 1, (~), p (~) = - -  I m F  ~ ( ~ ) ,  ~ ~ [--  i ,  t]~ 

we obtain the following boundary value problem for determining F(O: 

d u  

Here the parameter  k is given by the equality (1.15).  The problem 

obtained here is a special  case of the basic problem when u ~ i ,  
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U (u + -) = e -s", V (~ + ~) = sin (r + ~). The representation F ([) ---- 
= Y (u I ~), holds for the function F(~ ~n this case and, consequent- 
ly, solving problem (3.7) is reduced to solving the equation 

" '  (~) = ~V (~) sis ( -  ~ (- I ~) + P (l)) .-ma~, | e i -  t ,  t ]  ( s . o )  

with the condition (2.9). We shall take as the given parameters 

�9 =gLolV~, %=L~/L,  ( v = t ,  . . . .  n) (S.10) 

where L0 is the characteristic dimension (the value of the abs~ssa or 
the ordinate of one of the points A or B of the free surface wi l l  be tak- 
en as this dimension), V.o is the velocity at infinity, L v are the lengths 
of the rectilinear segments which correspond inthe ~ plane with the 
segments ~ = [|., ~+~] on the | axis (v [] 1, 2 ..... n). We assume 
that the velocity at infinity is parallel to the axis of abscissas and 
that the point ~ = ~o corresponds to the point z = .o We introduce 
the function 

~,(~)-/'(~e ~s~'iv, ~e~, ( ~ - t  ..... n). 

Making use of the notation introduced, it is not difficult to obtain 
the relations 

vXo (u, ~) - -  ~'X ( ' ,  v, ~) = O; Xo (u, ~) ffi exp iF (~o) - -  F" ( ~ ) ) ,  

�9 r (u, ~, e) --  X ~ (s, ~) = O, 

~+z ( 3.11 ) 
X' (", ~) -ffi ~! I ~, (~) I ~--a, o) ~ (v - -  i . . . . .  n), 

in which o = 0 or o = i, depending on whether L 0 is the length of an 
ordinate or an abscissa, and the sign in front of the integral is chosen 
so that the condition X(U, v, s) > 0 is satisfied, Relations (3.11) are 
additional conditions imposed on )~ and s which must be satisfied by 
the solution of the problem (3.8) if it is a solution of the hydrodynamic 
problem with the given parameters (3.10). 

Let the unknown function u(~) be bounded and not vanish at the 
ends of the segment [-1, 1]. Then the operator inverse to l(ui~) with 
conditions (2.9) is of the form./-" (s I |) = -- ~ ('~ I ~) -I = ~ (u [ |~) (re- 
fer to the remark in �82 2. 2). Taking this into consideration, also (3.6), 
we obtain the integral equation for the function v (|) =- -- / (,. [ |) 

(O),-s(:(, I t ) - , / (~  I~)) a J, 

e f - - i ,  11, 

where H(R, t) is a function included in equality (3.6). The integral 
representation expressing the Zhukovskil function by means of the func- 
tion v(~) is in this case of the form F (~) = i| (v I ~) -- J (~ [ |s). 

we multiply Eq. (3.9) by e "su(~), then we take the integral from 
sides of the obtained equality, selecting the constant of integration 
from conditic)n (2.9). Then, aRer differentiating with respect to [, 
we have 

~.T (4) sin ( - -  I (~ I ~) ue ~ (~)) 

i -+- S~,Io *f ('0 sln (--  I (,, l ~) § l~ 1 '0)~ 

We substitute the expression for u'(~) found here in equality (3.6) 
and introduce the function v (|7 == -- ] (u I |). As a result, we obtain 
the integral equation 

1 

e ( ~ ) = . ~ . !  "f (O H (L O sin (e (O + ~ (O) 8~, ~ e [ - - i , i ] .  

- i + ~x ~ ~ (~r) sin (~ (~) + p (~)) 

This equation is a special case of Eq. (2.12). 
8.8. Jet flows with rectilinear boundaries in the presence of capri- 

lary forces. Let us consider a flow of Weightless fluid whose boundaries 
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consist of a finite number  n of  rec t i l inear  solid walls and one free sur- 

face subject to capillary forces. We choose the canonical region and 
the correspondence of points just as in the preceding flow. We set ~o = 
ffi - i  in equality (1.2) and make the function F'(~) subject to the con- 
ditions 

R e r ( ~ ) = - - O , ,  | ~ , ( v = i  . . . . .  n); 

I m F ' ( ~ ) =  O, | ~  [ - - t , t ] .  

Here ~v and o v are the same as in (3.7). We introduce the func- 
tions 

Y (1) = f (~), 8 (1) = Re r '  (1), ~ e [--  i ,  I] 

and the parameters k and ~ determined by equalities (1.19). Making 
use of the notation introduced and taking condition (1.20) into consid- 
eration, we obtain the following boundary value problem for deter- 
mining F( ~k. 

u- -O,  [ ~ l ~ [ i , ~ ] ;  

d- (sh.-----~ pc- ' )  f--i,  I]. (3.12) 

The problem obtained here is a special case of the basic problem, 
when ~r =- -- t ;  b" (u "4" ~) ~-  i, F (~ -}- J~)~= --  sh ~ -}- l/m~e-v. In this 
case, the integral representation u (~) = �9 (- [ ~), holds for the func- 
tion F(~), from which v ~..--.r (s I ~), | ~ [-- i, lJ, and, consequent- 
ly, solving problem (3.12) is reduced to solving the equation 

u' (t) - ~W (|) (~  7 ( .  I | )  + s/s p~,(.l~)) + 8 (|), 
(3. Z3) 

| $  [ - - i , i ]  

with the condition (2~176 The additional conditions for parameters ). 
and s for problem (3.12) will be of the same type as conditions (3.5) 
and (3,11) for problems (3.1) and (3.8). We assume that the unknown 
function u([) of Eq. (8.13) vanishes at the ends of the segment [-i, i]. 
In this case, after integrating by pans, we have the following formula 
for J(u[~). 

s 
J ( . I D - - ~  u'(0 In l~,--r (3.14) 

- I  

We substitute u'(t) from Eq. (3.13) into (3.6) and introduce the 
function v({) �9 -J(u]|). We then obtain the integral equation 

% 

1 
8* (~) - - ~ 8 (0 In l ~ -  ~ [ ~. 

- I  

The integral representation expre~ng the Zhukovskii function in 
terms of the function v({) is in this case of the form u (~) == f~F (~ ] ~). 
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