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JET FLOWS AND THE CORRESPONDING NONLINEAR EQUATIONS
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The general boundary value problem, including known plane steady
jet flows of an ideal incompressible fluid, is formulated. The sim-
plest problem retaining all the specific features of the general prob-
lem, known as the basic problem, is separated from the general prob-
lem. The solution of the basic problem is reduced to solving a non-~
linear integro-differential equation and also to solving nonlinear inte~
gral equations. Examples of flows whose determination is reduced 1o
solving the basic problem are cited.

§1. THE GENERAL BOUNDARY VALUE PROBLEM,
THE BASIC BOUNDARY VALUE PROBLEM

1.1. Determination of a jet flow in the parametric
plane. The Zhukovskii function. Those flows whose
boundaries consist of solid walls and free surfaces on
which the pressures are constant are generally called
jet flows. Here we shall consider a plane steady jet
flow of an ideal fluid; it is also assumed that the fluid
is incompressible and the flow region is simply con-
nected, As is well known, in order to determine all
the elements of such flows, it is sufficient to find the
complex potential velocity of the flow w = ¢ + iy at
every point z = x + iy of the flow region, that is, to
find the relation w = w(z). Finding the relation w =
= w(z} is facilitated if we introduce the auxiliary com-~
plex variable ¢ = £ + in, which varies in some canoni~
cal region, together with an auxiliary function, and
seek the relation w = w(z) in the parametric form

2= 2D

Therefore, the relation w = w(z) will be taken here
in the form (1.1). We shall take either the upper half-
plane or the right quadrant of the upper half-plane as
the canonical region of variation ¢ = ¢ + in. It is con-
venient to take the following function as the auxiliary
function:

w=w (L), 1.1)

F() = o In(3-22) + F° (@).

(1.2)
Here w, is some given number, V, the characteris-
tic flow velocity, and F°(¢) the given function selected
so0 that F(¢) will be analytic in the canonical region,
The function F(¢) determined by the equality (1.2)
will henceforth be called the Zhukovskii function, Since
the flow is steady, the region of variation in the com-
plex potential w = ¢ + iy is always known and, conse-
quently, we may consider the relation w = w(z) known.
The latter can be represented in the form

(1.3)

Here ¢, is a parameter having the dimension of
the velocity potential which is characteristic of the
given flow. Let the Zhukovskii function be known;

then, making use of equalities (1.2) and (1.3), it is
easy to find a function mapping the flow region onto
the canonical region of the plane ¢:

4
s = g\ emOFO Qa1
1
;@
/ﬁ-\/—
®
o f

Fig, 1

For the complex velocity we have, according to
(1.2), the expression

W eoul FO-F(0)

iz (1.5)

Thus, in order to determine all the elements of the
flow, it is sufficient to find the Zhukovskii function
F(¢) and the w = w({).

1.2. The boundary conditions for the Zhukovskii
function. In order to determine the form of the gen-
eral boundary value problem for the Zhukovskii func-
tion, it is necessary to consider what conditions will
be satisfied by the Zhukovskii function on different
sections of the boundary of the canonical region, de-
pending on the properties of the flow to which these
sections correspond. Let AB be a part of the boundary
of the flow region which corresponds in the plane ¢ =
= ¢ +in to the segment [a, b] of the £ axis (Fig. 1).
We shall denote the real part of F(¢) by u and the imag-
inary part by v; hence

F()=u+iv (1.6)
and we note, on the other hand, that
1 Ve s °
F(C)=—(gln(-V;E’9)+F, 1.7

where Vg is the modulus of the velocity, < the angle
of inclination of the velocity to the real axis. Further,
we shall denote the boundary values F°(¢) on the seg-
ment [a@, b] by F°(¢{). We note also that in the flow
under consideration, the impermeable solid wall and
the free surface are streamlines. We shall consider
four cases depending on the form of the segment of
the boundary AB.

1) The line AB is a solid impermeable wall. We
set w, = 1 and direct the axis so that the angle of in-
clination of the tangent to the curve AB will coincide
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with the angle of inclination of the velocity 4. We in-
troduce the concept of relative curvature for the curve
AB, Let KS(J) be the absolute value of the curvature
of the line AB as a function of the angle of inclination
of the tangent 4. Then the relative curvature of the
curve AB will be the function

K (8) = K* (w0 ~ ) / K°. (1.8)

Here K° is the curvature of the curve AB at some
point of the line, and 7o the angle of inclination of the
tangent at this point. It is known that if S is the arc
length of the curve AB, then the following equality is
valid for KS{):

dd/dS = F K¢ (§)- (1.9)

Here we take the minus sign if 4 decreases when S
is increased, and the plus sign if 4 increases. On the
strength of the fact that AB is a streamline for the ve-
locity and the velocity potential, the following rela-
tions hold:

vV, = |%f‘;— on AB; p=0of ), EIa, bl (1.10)

From relations (1.6)—(1.10), and introducing the
dimengionless parameter

;v::q)oKo/Vo (1’11)

we find that F(¢) on the segment [a, b] satisfies the
boundary condition

TEFrS (&) | T O K (14 50— Re F°(§)) e —

=ReF* (t), E1a, b] (1.12) (1.12)

2) The line AB is, a free surface of a heavy fluid.
Let us take wy = 1 and direct the coordinate axes so
that the acceleration of gravity g will be directed
toward the negative direction of the y axis and so that
the angle of inclination of the tangent to the line AB
will coincide with the angle of inclination of the veloc-
ity 4. Making use of the Bernoulli integral, on AB we
have the equality

YoVs® 4 gy = C — po, (1.13)

where py is the pressure on the free surface and C is
a constant, On the basis of obvious geometric consid-
erations we find

dy/dS = sin &, (1.14)

We differentiate the equality (1.13) with respect to
S and make uge of the relations (1.6), (1.7), (1.10),
and (1,14); then, introducing the dimensionless param-
eter

h=go, [V (1.15)

we obtain for F(¢) the boundary condition

B h1f @) RO sin (o — Im F ) e

= ReF” (§), §&Iq, bl (1.16)

3) The line AB is a free surface subjected to capil-
lary forces, We set wy = —1. Let p; be the pressure
over the free surface and g the coefficient of surface
tengion; then, as is known [1],

ps — po = ¢K* (9)- (1.17)
In this case the Bernoulli integral is of the form
P1— P = Yoo (Vo* — Vi)

From the relations (1.6), (1.7), (1.9), (1.10),
(1.17), and (1.18), and introducing the dimensionless
parameters

(1.18)

A= Vo /¢ p=2(py—po)/0oVe (1.19)

we see that F(¢) on the segment [a, b] satisfies the
boundary condition

B 217 @) 1sh (Im P> () — o) +

+ 5 pexp (Im F°(8) — )] = Re F” (8),

Ee (e, b]- (1.20)
'4) The line AB is a solid permeable wall along
which the velocity potential retains a constant value,

In this case, it is obvious that

Vs:l%lon A4B; Y= —iqf(E), Ela, bl (1.21)

We set wy = 1. Making use of the equality (1.21),
also the relations (1.6)—(1.9), we find that on [a, b]
F(z) satisfies the boundary condition

Z FMF ©) e mFOK (a4 15— Ro F° () e =

=ReF” (§), E<[a, 0] » (1.22)
where the parameter A is determined by equality (1.12).
An analysis of the boundary conditions (1.13), (1.17), (1.21),
and (1.23) makes it possible to establish the form of the general bound-
ary problem for the Zhukovskii function including all stream flows
whose boundaries consist of solid (generally speaking, curvilinear)
walls and free surfaces which may be subject to gravitational ot capil~
lary forces. Indeed, if we take the upper half-plane as the canonical
region of the variable {= § +in, then every solid wall or free suiface
of the plane of the flow will correspond to a segment on the real axis
£ (finite or infinite); on the other hand, the equalities (1,12), (1.16),
(1.20), and (1.22) imply that the nonlinear part of the boundary prob-
lem for the function F(Z) = u + iv on each such segment is the product
of two functions, one of which depends only on u and the other only
on v, the linear part contains the derivative in respect to §, or u, or
v. If we take these two facts into consideration, also the possibility of
arbitrary selection of the function F°({) in (1.2), then it is easy to ver-
ify that any boundary value problem for the Zhukovskii function, with
the assumptions made above, will be a special case of the general
boundary value problem.

1.3. The general noulinear problem, Problem 1,1.
The problem is to find the function F(¢) which is ana-
lytic in the upper half-plane, bounded at infinity, and
continuous on the real axis subject to the boundary
conditions
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1“'“»&_ 1—n, 4o
2 dE 2 dE,

=M E) U (@ + o (B) V7 (v + By (B)) + 64 (8) ( (1. 23)

oy (v=1,2,...,n) . Uﬂ Gy=(— 00, c0); %y=41"
V=L

where a (8), By (8), v (), Ou(&), U¥ (u +a) and V* (v + B)
are given functions of their own arguments,

It is natural to call Problem 1,1 homogeneous if
F(¢) = 0 is a solution of this problem. It is obvious
that the following condition holds for the homogeneous
problem:

Aty (8) U (o BNV By (8)) + 8, (B) = 0

(v=1,2,..,n). (1.24)

Henceforth, the parameters A, will be denoted by
A. The coefficients of the problem may include some
real parameters €4, €y, ..., &m, that is, generally
speaking,

Oy (E) = Oy (gr 8): Bv (g) = B\h(g, 8))
& =1 8 &E) =08, e

where & denotes the set of parameters €y, &y, ..., €m.
In the general problem formulated the parameters A
and € are assumed to be given.

1.4. The solution of the hydrodynamic problem.
The boundary value problem with additional conditions
imposed on the parameters, A solution of the boundary
value problem (1,23) formulated above will not, gen-
erally speaking, yield a solution of the hydrodynamic
problem to which it corresponds since the formula-
tion of the majority of jet flow hydrodynamic prob-
lems is such that the parameters A and € are asso-
ciated by some relationships with the unknown func-
tion. According to ifs origin, the latter may be geo-
metrical or physical in nature, A part of these rela~-
tions are represented by a transcendental equation of
the form

(1.25)

Ay =1/ % (8, v, &) (v=1,2,...,n) (1.26)
whose number is usually equal to the number of pa-
rameters A. Here 7y, are given quantities and yx,,(u,

v, &) given functionals. In the general case, the re-
maining relations are implicit transcendental equa-
tions of the form

=120

1 (u,‘ v,e) =0 (1.27)

whose number is equal to the number of parameters

¢. Examples of relations of the form (1.26), (1.27)
will be given below when we consider jet flows with

a curvilinear wall and jet flows of a heavy fluid [(2.11),
(3.5), and (3.11)].

Thus, a solution of the jet flow hydrodynamic prob-
lem is equivalent to the following boundary value prob-
lem with conditions for the parameters A and &,

Problem 1,2, Find a solution of the general bound-
ary value problem (1,23) under the assumption that

the parameters A and € are associated with the un-
known function by means of additional conditions (1.26),
(1.27),

A natural way for solving Problem 1.2 is first to
solve the general boundary value problem (1.23), after
which the obtained solution F (§) = F (§; A, &) = u (§, n;
A, &) + iv (E, n; A, &) is substituted into relations (1.26),
(1.27), and then the system of nonlinear transcenden-
tal equations for A and e obtained as a result of the
substitution is solved.

1.5. The basic boundary value problem. Since solv-
ing the general boundary value problem involves diffi-
culties, we shall isolate its simplest particular prob-
lem which at the same time retains the principal spe-
cific features of the general problem, both mathemati-
cal and physical.

We shall obtain such a problem if we set either
D' (w+ay (B) =0 or ¥V (v+ B, (§)) = 0in (1.23) on all
segments o,,. Physically, this corresponds to the case
in which all sections of the boundary corresponding to
jet flow except one consist of solid rectilinear walls
and free surfaces not acted upon by external forces.
In this case, it is obvious that the function F°(¢) in
equality (1.2) can always be expressed so that either
u=0 or v=0 on all segments except one, and without
loss of generality, we can take the segment [-1, 1} as
the latter., Thus, we approach the problem.

Problem 1,3, The problem is to find the function
F(¢) = u + iv which is analytic on the upper half-plane,
bounded at infinity, and continuous on the real axis,
with the boundary conditions

{4+ sy +{(1—n)u=0,

(1.28)
E=oy, =41 (v=1,2,.., n),
= MEU @+ (o +BE) +OE),
Ee 111 (1.29)

where a (8), B (§), ¥ (8), 8 (8), U (v +a).V (v + ) are
given functions of their own arguments and A is the
given parameter,

The boundary conditions of this basic problem con-
tain four coefficients: « (), B(¢), (), and §(¢) and
one parameter (which is considered as being given).
If the coefficients contain real parameters g, that is,
if

a(®) =a(E¢e), B(E =Pp(E e,
y® =v@E¢e, 8 =5(e)

then they are considered given. The following condi-
tion holds for the homogeneous problem:

(1.30)

Ay (OUEVEE®) +8E =0 (1.31)

When a solution of the given problem contains arbi-
trary constants, it is necessary to impose additional
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conditions on the desired function; their selection will
depend on the physical peculiarities of the given flow.
As one of such conditions, we can take the equality

u (&, 0) =0, he -1l (1.32)

In order for the basic problem to yield a solution
of the corresponding hydrodynamic problem, it is nec-
essary to satisfy the additional conditions (1.27) and
one condition of the form

h=1]x @, v, e

where 7 is a given parameter x(u, v, &) a given func-
tional. Thus, a solution of problem (1.28), (1.29) is
equivalent to solving the boundary value problem with
additional conditions imposed 6n A and €.

Problem 1.4, The problem is to find a solution of
the basic problem (1.28), (1.29) with the assumption
that the parameters A and & are connected with the
unknown function by the additional conditions (1.33),
(1.27).

A natural way to solve problem (1.4) is first to
solve the basic problem (1.28), (1.29); after this,
the obtained solution F (g) == F(§; &, ¢y = u (§, w; &, &)+
+ iv (E, w; A, &) is substituted into the relationships
(1.33), (1.27), and the system of equations obtamed
is solved for A and €.

(1.33)

§2, REDUCTION OF THE BASIC AND THE PRINCI-
PAL BOUNDARY VALUE PROBLEMS TO NONLINEAR
INTEGRO~DIFFERENTIAL AND NONLINEAR INTE-
GRAL EQUATIONS

Let u(f) be the real part of F(¢) on the segment
[~1, 1] of the £ axis, that is, *we set

u(®) =uft0, tel-, m (2.1)

We shall consider that the function u(¢) is known;
then determination of F(¢) is reduced to solving the
mixed problem or the Dirichlet problem for an ana-
lytic function. We shall assume that in the last case,
the condition F(») = 0 is imposed on F(¢). If we make

" use of known solutions of these problems [2, 3], then
it is not difficult to obtain an integral representation
of F(¢) through the function u(¢) in the upper half-
plane. We introduce an integral of the form

-

Q(ul@) m(;) S u(t) dt

—tem EELIRE.2)

where w(£) is a real function and w(£) a function which
is analytic everywhere in the upper half-plane except,
perhaps, at an infinitely distant point at which we as-
sume there is a pole for the function and which satis-
fies the condition lime (§) =0 (when { —~ &, t =

€ [—1, 1]. We emphasize by the notation {1 (u|{) that
this integral is not only a function of the point ¢, but
also an operator with respect to u(¢). When it is nec-
essary to stress only one of these factors or to note
the dependence of this integral on w(f), then we shall
also require the notation Q (%), Qu or Q(u,e|{) for it,

In the special case, when o () =1 or o ()=
= — YT 1, we shall denote this integral through

;é [_'17 1"

. 1
_1__ _"_(Q..dg,
Sl =t @.3)

Q@b = Y

ter—1, 11

We shall understand ¥'Z8 — 1 to mean the branch
which is analytic on the £ axis of the plane ¢ cut along
the segment [-1, 1] and such thatV' T — 1 = { + O ()
for large |z|. Along with the integral Q (u|%), we in-
troduce the singular integral

1
d
T@g=200 20 2o te-t1 @9
1 _

which is understood in the sense of the Cauchy princi-
pal value. For this, we shall also make use of the no-
tation T (§), T u, T (u,0]%), having the same sense as in
the corresponding notation of the integral Q(l¢). In
the two special cases for giving w(¢) noted previously,
we shall denote the integral T (ul¢) through

Ty =5\ e te
» 2.5)
reig- YR} 0 o8 e

If we make use of the introduced notation, then the
above indicated integral representation F(Z) through
the function u(f) can be represented in the general
case (with the assumption made above) in the follow-
ing form [2, 3]:

F(O) =2l

however, if the order of the pole w () is equal to n,
then u(¢) should satisfy the conditions

2.6)

Su(t)t"" =0  (k=1,2,.. @.7)

. M
) @ (?) :
where m = n — 1 if F(¢) is bounded on infinity and m =
=1 if F(o) = 0. If we pass to the limit in (1.6), (2.6)
with ¢ — &, |£] =1, then make use of the Sokhotskii
formulas, then it is not difficult to verify that the real
and imaginary parts of F(¢) on the segment [-1, 1] of
the £ axis are connected by the relations v = —T(ul£).
We now substitute the expression found in (1.29). Then,
for determining u(¢) we obtain the nonlinear equation

VE=MEUT@E ta@EV(—Tub+
+HB@E)+80), Ees—1,1]

which is integro-differential and singular. According
to (1.32), a solution of this equation must satisfy the
condition

(2.8)

() =0, §e(—1,1] 2.9)
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and at times, conditions (2.7), if the solution of the
basic boundary value problem is to satisfy these con~
ditions. Henceforth, unless we state otherwise, we
shall assume that the solution of Eq. (2. 8) satisfies
only condition (2.9). Thus, solving the basic boundary
value problem is reduced to solving Eq, (2.8). Thus,
it will be called the basic nonlinear integro-differen-
tial equation. The functions a (), G(£), v(), and 6(¢)
are naturally called the coefficients of Eq. (2.8). It
is natural to call Eq. (2.8) homogeneous if the coeffi-
cients satisfy the relation (1.31). In the general case,
the coefficients depend on the parameters g, that is,
the relations (1.30) hold, The parameters A and € are
considered given. Generally speaking, solving Eq.

(2. 8) will not be equivalent to solving the correspond-
ing hydrodynamic problem. In dvrder for a solution of
Eq. (2.8) to be equivalent to the hydrodynamic prob-
lem, or, equivalently, the basic boundary value prob-
lem with additional conditions imposed on the param-
eters, it is essential that this solution satisfy the sys-
tem of nonlinear functional equations obtained by sub-
stituting the functions u (§, m; &, ¢), v (§, n; A, €) of
the equality (2.6), where F ({)=u (&, n; k&, &) -+ iv{En;
A, &), in the relationships (1.33), (1.27).

2.2, Transformation of Eq. (2. 8) to nonlinear inte-
gral equations. In some cases, Eq. (2.8) can be re-
duced to a nonlinear integral equation. We shall con-
sider three such cases.

1) In case the derivative u'(¢) is integrable, let the
operator T (ul¢) be represented in the form

T (|8 =T (|t) = —S w () H (0|& £)dt, (2.10)

-1

where H(wl&, t) is a Fredholm type kernel, that is a
function which is quadratically summable in the square
~1=¢, t=1. Moreover, let M(ul{) be the operator
inverse to T(ul¢). Then, if we introduce the function
v(E) = —T(@l¢), it is easy to show that with the assump-
tions that have been made, solving Eq. (2. 8) is re-
duced to solving the equation

2@ =1 T H (5 HT (=M @|t)+a@)-

1

V(0 () + B ) At + 8 (B
5 (&) = T* (8] %),

2) Let the equality (2.10) and the following hold:

te=[—1,1]. (2.11)

a (§) =a =const, 8(§)=0.
In this case, if we introduce the function Q(u) de-
termined by the equalities

u

du
R(w) =\ gy

0

AR (u)

Q (u) = du

where R'l(u) is the operator inverse to R(u), it is not
difficult to verify that solving Eq. (2.8) is reduced to
solving the equation

1

v(® =A{ TOH (L OV (O +80) Q-

)

.[x

\ Y (D) (2 (v) 4 B (7)) dr] dt.

o

AL T

fe= 1,10, 2.12)

where v({) is the same function as in Eq. (2,11).
3) Let U(u + &) not depend on u, that is,

U@ +e @ =U®=U(.

Then, Egq. (2.11) takes the form of a Hammerstein
type equation:

1

2@ =2 1OV @0 () +BO)H (o]E 0di 4 8" Q).

-1

Esi—LiL v (® =7y ®U (§)- (2.13)

Remark. If we make use of the known formulas for
inverting a Cauchy type integral [2, 3], it is easy to
establish that the following formula holds for the op-
erator M (v} &) = I'-* (v| £), included in Eq. (2.11):

M8 =T @o* 8+ C* ), o*E =@

in which the value of the constant C and the form of the
function y(¢) depend on the behavior of w(£) and the un~
known function u(¢) of Eq. (2. 8) at the ends of the seg-
ment [-1, 1], If the ratio u(¢)/w(¢) has integrable
singularities at both ends of the segment [-1, 1], then
y (E) = 1/ V1T — E, and the constant C is determined
from the condition (2.9). If the ratio u(f)/w () is bound-
ed on both ends of the segment [—1, 1], then ¥ (§) =

= 1T =& and C = 0; however, the following condition
should be satisfied:

¢ _ul _
_Sl SV dt=0.

In case the ratio u(¢)/w(¢) has an integrable singu-
larity at the point £ = 1 or ¢ = —1, then, accordingly,
1@ =VIi+E/VIi—Forn(®=V1—-%/V1+¢and
C = 0. It is also not difficult to write an integral rep-
resentation for the Zhukovskii function F(¢) in terms
of the functionz (§) = — T |8 =ImF (}), te [— 1, 1L

2. 3. Reducing the general problem 1o a system of nonlinear equa-
tions. Solving the general problem can be reduced to solving a system
of nonlinear integro-differential equations. We shall show this through
two examples.

As the first example, we can cite the problem of discontinuous
flow around a finite number of curvilinear arcs in accordance with the
Kirchhoff scheme. This problem was considered by L. I. Sedov and
was reduced by him to a system of nonlinear integro-differential equa-
tions [1, 41

As the second example, we shall consider cavitational flow of a
heavy fluid along a plate in accordance with the Zhukovskii-Roshko

" scheme [1] with the assumption that the plate is oriented perpendicu-

lar to the velocity at infinity and that the walils which constrain the
stream are parallel to the velocity at infinity, The flow under consid-
eration is shown in Fig. 2, where the correspoudence of points in the
plane of the flow and the auxiliary plane is indicated. With this cor-
respondence, the following formula for the complex potential will
hold:
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w=‘P§(C—-coseo)”.
1 _
Voo =5 (Vog+ Vip)e

Voo—Vac
Vop+ Vg

COoS gg =

Fig, 2

We set wy = 1, Vg =V, in equality Zl. 2) and choose the funcrion
F°(§) so that it satisfies the conditions ’ ¢

0, —o0, CES—b, a<E< o0,
Im F° () = {-—llan, —1 <<t < cos g,
1z, cos gg<{E <1,

In(V,/ V), —b<<ES—1 -

Re F°(§)={ln V! V1) 1 <ES a0

where V; and V; are the velocities at the points C and D, 1espectively,
then we introduce the functions determined by the equalities

u (&, 0) = u, (i (B)),

HE =@+ 1—28)/(@~1) 1<E<a
w (§, 0) = uy (fo (B)),
—b<EC —t.

L@ =—@G+1+28/06—1)

Then, the following integral representation will hold for the
Zhukovskii function;

a =1

@ (wa)_a wh@®) _dt 7
F)=— [—5 T—¢ |m(t51+5b i—¢ 1m<t)|]_

aQ=VE-DE—a G+

Here we take that branch which takes real positive values on the
segment (@, o) of the §-axis for w({). We shall denote by wy(¢) and
wy(¢) those branches of the functions

o (5 =i V(=1 — a) (€ — by,

_a+3 By = 26+ a-+1
= Tl '

“ a—1"7 a—1

00 =— i VB -DCTFa CF,

b,—b+3

_ oo 2atbt1
=1

2 p—1-

which take purely imaginary positive or negative values on segments
(by, w)or (1, ), respectively, and by py(E*) and py(E*) the real func-
tions

=2ttt DE

pEn=2ttti-eoni 7

a—1

Making use of the notation introduced and boundary condition
(1.16), it is not difficult to obtain the following system of equations

for determining uy(E*) and uy(§*), where &* = f)(§)if 1 =€ =a, and
E* = fyk)if-b=E=-1
' (5%) = M (8%) €45 sin [T (uy, o0 | §%) —
—iQ (ug, 02 |p) + B EY],  (—1<ET),
ug (%) = hata (%) €54 sin [T (ua, 02| ) —
—iQ(m, oy [pa) F BB (—1SERSA

a—1

1
m=0", nEm=e—n( 5 - ),

Bu(E%) = —Im F° [y (E")}e

b—1 b+1
m=2, nen=e-n(5 e g e ),

Be(8%) = —Im F°[fa* (EM)] .

The solution of system (2. 14) must satisfy the condition u{0) =0,
ug(0) = 0. As the basic given parameter, we shall take the inverse of
the Froude number

v=gh/V2

where h is the length of the plate. In order for the system (2.14) to
provide a solution of the hydrodynamic problem under consideration
with a given 1, it is essential that the following conditions be satis-
fied:

(FQ—F@)=0 for

(u (8, 0)—Re F° (E))] —

lim { exp[2 ‘lim
L—r00 ' Emp—1
-1LE< C08 &
— exp [2 laim (u (&, 0O)—Re F° (E))j=2t,

cose0—25<1
1
2Mi | (£ —cos eg) exp (F° (E) —u (8, 0)) ¢ +
-1

+ vexp[3 éim (Re F° (§) —u (8, 0h] =0
—+1

€08 g<E<L .
1
20t { (£ — cos eq) exp (F° (§) — u (€, 0)) d€ +
-1

4+ texp[3 lim
Bl

~1EC COS &

(Re F° (8) —u (§, 0))} =0~

Conditions (2.15) yield five real transcendental equations for de-
termining the parameters Ay, Ay, &, &= 1/a ande;, = 1/5 (0 < g,
gy << 1),

¥ 74¢
8 -7 ®
®

Alfre 4 8

J F E
‘Fig. 3

§3. Examples of jet flows whose determination is reduced to solv-
ing the basic boundary value problem. In the general case, determin-
ing a jet flow is reduced, as can be seen from the foregoing, to solv-
ing the general boundary value problem; however, determining some
whole classes of jet flows is reduced to solving the basic boundary val-
ue problem. Here we give three classes of jet flows.

3.1, Jet flows of a weightless fluid with a curvilinear wall. let us
consider a flow whose boundaries consist of a finite number of 1 recti-
linear walls, one curvilinear wall, and a free stream coinciding with
it; there are no stagnation points on the curvilinear wall. We shall di-
rect the coordinate axis as shown in Fig. 3, which shows a part of the
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boundary of the flow consisting of the curvilinear wall AB, also the
rectilinear segment and the free stream BC adjacent to it. We shall
determine the relative curvature K(9) of the arc AB from the equality
(1.8) where #g and K® are the angle of inclination of the tangent and
the curvature of the wall at point A, respectively, We shall assume
further that K($9) is an even function, which does not restrict general-
ity, since it can always be extended from a region of positive values
of the argument to a region of negative values (or vice versa) in an
even manner. We shall take as the canonical region of variation in

¢ the right quadrant of the upper half-plane in accordance with the
points shown in Fig. 3 in which all rectilinear boundaries of the flow
are transferred to the imaginary 1 axis so that the segment o), (v =
=1,2, ...,1) of the 11 axis corresponds to each rectilinear section of
the flow boundary, The angle of inclination of the velocity on a rec-
tilinear segment of the flow velocity corresponding to the segment o,
will be denoted by 8, (¥ =1,2,...,n). We set wy =1 in equality (1.2)
and take

+ Foll)e

o (F) == R
Fe(8)=nmns 4 2is in I iVE=1

where the function Fy§) satisfies the conditions

Re Fo(im) =0, 10, (v=1,2,...,n)

Re Fy (B) =0, E = [—1,1],

Im Fy (B) =0, § &[4, 00].
Now, we also introduce the function

1 1 — E2\% -
Yo =t @Y cmee, teb

then extend it to segment [~1, 0] evenly and denote the function con-
structed in this way, varying on the segment [—1, 1], again by y(£).

We now extend the function F(&) which is analytic on the entire
surface of the half-plane, considering that it should satisfy condition
(1.12); then we obtain for determining F() the boundary value prob-
lem

v =0, [Ele 1, ool;

F=MOK@S,  ES-11) 8.1)
where the parameter A is given by the equality (1.11). The problem
obtained here is a special case of the basic problem when x = 1,

U (u~+a)= K (u), V(v + B) = . In this case, the integral repre-
sentation (2.8) is of the formF (§) = ¥ (u] §), & & [— 1,1] for F(&);
from thisy == — I (u]§), § € [— 1, 1], and, consequently, solving

the problem obtained here is reduced to solving the equation

wWE) =K @E) Y, re—1,1] (3.2

under the condition u(0) = 0, an odd sclution being sought., We shall
take the following quantities as the given geometric parameters:

1=K, 1,=1L, /S, v= 1,..., 1) (8.3)

where L, are the lengths of rectilinear segments which correspond in
the { plane to the segments o), on the 1 axis. As a physical parame-
ter, we take the quantity

%o == 2Py~ Po) | V2 = Vo [ V.2 — 4, (3.4)

which is generally called the cavitation number; here Poos Por Voos
V, are the pressure and velocity at infinity and at the free stream,
respectively. We shall make use of 0, and 7y, to denote the ends

of the segments 6, (¥ =1, 2, ...,n) and 7, a point on the B axis which
corresponds in the plane of the flow to an infinitely remote point. We
introduce the functions

=P+ Vifn B)204 (in) ¢~ T Flin),

n€s, (v=1,..., 1)

Making use of the notarion introduced here, it is not difficult to

obtain the relations

1
€ = Ag (v, &), X (v, s)gj]-r(g)le'(im)di:
o

(v, e)—v (v, 8) =0,
Ty .

Cee= § oty

Ty

%o =1, (1 + VIF 0% exp (— 2Im Fo (ine) + 20 (0, 1h))s

w=1,...,28 (3.5)

in which the functions y(§), y,(§), and the quantities 7, (v =1,2,...
..»,n) depend, in general, on the parameters £, Relations (3.5) are
additional conditions imposed on the parameters A and & which must
be satisfied by a solution of problem (3.1) if it is a solution of the
hydrodynamic problem with given parameters (3. 3) and (3.4). We
shall write the integral equation for » (§) = — I (z | &). In this case
we note that when w(§) is an even function which is bounded and does
not vanish at the ends of the segment [~1, 1] and uf0] = 0, the op-
erator which is the inverse of I(ul§) will be /-t (u | &) = — J (u | §)
(refer to the comment in regard to 2.2 in §2). We also not that it is
not difficult to obtain the following formula for I(u|E) by integrating
by parts:
z
tain=—\ voBE @,

-1

|t —El )
1—&t+ VA= T —7)

H(E, t):-i—m (3.8)

We substitute au'(t) from Eq. (3.2) into (3. 8) and introduce the
function v (§)i= — I (u ] &). We then obtain the integral equation

1 .
v(E)=A{ TOHEHKJ @) Vats
-1

which is a special case of Eq. (2.11).

If we take into consideration that Re F (8) = » (¢, 0) = v (E),
tE = [— 1, 1], and make use of the Schwarz formula, then it is easy
to obtain the integral representation F (§) = @ (v | §) for the function
F(£).

3.2. Jet flows of a heavy fluid with rectilinear boundaries, Let us
consider a flow of a heavy fluid whose boundaries consist of a finite
number 1 of rectilinear solid walls and one free surface, We chall di-
rect the y axis vertically upward. As the canonical region of the vari-
able ¢, we shall take the upper half-plane with a correspondence of
points such that the free surface will correspond with the segment {1,
1] on the § axis so that the remaining part of the real axis is divided
into segments ¢, (v =1, 2,...,n), each of them corresponding in the
plane of the flow to a rectilinear section of the boundary with the angle
of inclination of the velocity along it &, (v =1,2,...,1n). We shall
set wy = 1 in (1. 2) and choose the function F*(£) so that it will satisfy
the conditions

ImFe(§) =9, E€o, (v=1,...n)

ReFP(§) =0,k [—1,1]. (3.7)

Then, taking condition (1,16) into account and introducing the
function

y@®=7®, BE=-—ImfFE, (11

we obtain the following boundary value problem for determining F({k
v=0, [§| ][4, ];

du

4—5=M(€)sin(v+ﬂ(i))f”. tel—1,1. (3.8

Here the parameter X is given by the equality (1.15). The problem
obtained here is a special case of the basic problem when % = 1,
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U(u+a)= e V(v + p) = sin (v + P). The representation F (}) =
= ¥ (u| ), holds for the function F({) in this case and, consequent-
ly, solving problem (3.7) is reduced to solving the equation

W@ =My @ sin(— 7§ +PE)™, Ee[—1,1) (3.9)
with the condition (2.9). We shall take as the given parameters
T, =L,/L,

T=KL¢/V°°, (v=1,...,n) (8.10)

where L, is the characteristic dimension (the value of the abscissa or
the ordinate of one of the points A or B of the free surface will be tak-

en as this dimension), V,, is the velocity at infinity, L, are the lengths .

of the rectilinear segments which correspond inthe ¢ plane with the
segments o, = [§,, §,4,) onthe £ axis (v =1,2,...,n), We assume
that the velocity at infinity is parallel to the axis of abscissas and
that the point ¢ = « corresponds to the point z = », We introduce
the function

1, (8) =1 () 6B F°O,

EEq, (vmi, .., n)

Making use of the notation introduced, it is not difficult to obtain
the relations

o (U, &) — Ax (u, v, 8) = 0; % (u, &) = exp (F (00) — F* (00)}

wy (4, v, &) — ¥ (v, 8) =0,
Eyst (3.11)
P SIn@e®0E =t

1
x(u’ v, )=+ Sl T(E) e'“(E' 0) sin (n—; — B (E) -1 (E, 0)) di,

in which o = 0 or o = 1, depending on whether L, is the length of an
ordinate or an abscissa, and the sign in front of the integral is chosen
so that the condition X(u, v, €) > 0 is satisfied, Relations (3,11) are
additional conditions imposed on A and & which must be satisfied by
the solution of the problem (3. 8) if it is a solution of the hydrodynamic
problem with the given parameters (3.10),

Let the unknown function u(§) be bounded and not vanish at the
ends of the segment [~1, 1], Then the operator inverse to I(uIE) with
conditions (2.9) is of the formJ= (u | §) = — J (u | &) + J (v | §) (re~
fer to the remark in 92.2). Taking this into consideration, also (3.6),
we obtain the integral equation for the function v (§) = — J (v | §)

v @A { TOH(E 0 sin (o) -+ B (IO IO-T 1N gy,

tes [, il

where H(§, t) is a function included in equality (3.6). The integral
representation expressing the Zhukovskii function by means of the func-
tion v(E) is in this case of the form F (§) = i® (v | §) — J (v | §¢)-

We multiply Eq. (3.9) by e~®(E), then we take the integral from
sides of the obtained equality, selecting the constant of integration
from condition (2.9). Then, after differentiating with respect to £,
we have

M!(E)lin(—l(UIE)+B(E))‘ _
«+3x§ 7(v) sin (=1 (u| ) +B(x))dv

u' (€)=

We substitute the expression for u'(£) found here in equality (3.6)
and introduce the function v (§) = — 7 (u { §). As a result, we obtain
the integral equation '

1
p(yms | —LUEE A0 B(3)
<14+ 3) é ¥ (v) sin (v (v) - B (v)) d¢

d‘o EE["‘I 1]'

This equation is a special case of Eq. (2.12).
3.3. Jet flows with rectilinear boundaries in the presence of capil-
lary forces. Let us consider a flow of weightless fluid whose boundaries

consist of a finite number n of rectilinear solid walls and one free sur-
face subject to capillary forces. We choose the canonical region and
the correspondence of points just as in the preceding flow. We set w; =
= —i in equality (1.2) and make the function F*({) subject to the con-
ditions

o n)

ReFP(B)=—1,,
ImFe(§) =0,

teo, (v=1,.
te—1,1].

Here 8 and g, are the same as in (3.7). We introduce the func-
tions

Y& =1r1®, te -1, 1)

and the parameters A and ¢ determined by equalities (1,19). Making
use of the notation introduced and taking condition (1.20) into consid-
eration, we obtain the following boundary value problem for deter-
mining F({) :

8 (§) = Re F' (§),

um(Q,

1Bl 4, =):

%%-—M(E)(ahv—-%-pc"’)+0(?.). Ee (-1, 11, (3.12)

The problem obtained here is a special case of the basic problem,
when x == —{, U (u4a)=1, V(v 4 By = — sh v 4 Y/gue™, In this
case, the integral representation F ({) = @ (u | {), holds for the func-
tion F({), from whichy = =7 (u{ ), E & [— 1, 1], and, consequent-
ly, solving problem (3.12) is reduced to solving the equation

w (@) =My @) (b J @D+ a0+ 3 @),
te[—1,1]

(3.13)

with the condition (2.9). The additional conditions for parameters A
and & for problem (3.12) will be of the same type as conditions (3.5)
and (3.11) for problems (3,1) and (3,8), We assume that the unknown
function u(€) of Eq. (3.13) vanishes at the ends of the segment [~1, 1].
In this case, after integrating by parts, we have the following formula
for J(u|E):

1
J(u|Eym—§ u(t) In |E—¢]ds. (8.14)
-1

We substitute u'(t) from Eq. (3.13) into (3.6) and introduce the
function v(£) = —J{u]E). We then obtain the integral equation

1
v (E) = A S 1(:)(—;—1;.-"" —shy (:)) In|§—¢|dt 8% (E),
-1
tel—-1, 1]
8% (5) = — f 8(t)ln [E—t|dt.
=1 .

The integral representation expressing the Zhukovskii function in
terms of the function v(§) is in this case of the form F ({) = i¥ (v | {).
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